Creating a Perfect Garden for You and Your Bees

By Sarah Holdsworth, Horticulturist and Devon BKA

Sarah Holdsworth gives us some ideas for wild forms of some great plants that will delight us as well as our bees. If you are planning your garden display for the year then look no further for tempting inspiration.

There is no better model of gardening for wildlife and ourselves, than nature itself. By, essentially, mimicking the best of nature’s symbiotic relationships, we can design our gardens as we would an edible forest garden or permaculture area, reduce the amount of maintenance our garden needs and increase its yields. By planting mainly perennials, including trees and shrubs, and self-sowing annuals, we instantly have the basis for a self-renewing, self-fertilizing and self-maintaining garden.

We can reduce or eliminate pest control chemicals by providing food and shelter for birds, animals and insects that will keep insect pests in check without destroying them outright. We can reduce garden maintenance to mulching, some pruning, occasional weeding and minimal pest or disease management. Creating a garden that is perfect for bees and for us entails creating a whole garden ecosystem, which is far more than the sum of its parts. The rewards of this stewardship will be the harvest of herbs, fruits, vegetables, nuts, seeds or medicinal plants for decades or, perhaps, centuries to come. The cogs in this wheel of life that make it all possible are the pollinators, mainly bees, so it very much makes sense to design our gardens with bees in mind.

Wild versus cultivated plants
A major consideration will be our choice of plants. Perhaps, little over one hundred years ago, this would have been a simple process of elimination arriving at the most desirable plants which are open-pollinated; that is pollinated by insects, usually bees, which transfer pollen from flower to flower leading to fruit and seed set. Now, we are faced with a plethora of red-herrings. Looking for the perfect plants for bees and other pollinators has become much harder than our grandparents could possibly have imagined. The reason for this is that plant breeding has become a competitive hobby and big business. Most ornamental plants now for sale in garden centres are modern hybrids known as cultivars. They are bred for certain traits such as dwarfing, larger blooms, different colours or double blooms. They are propagated on a large scale by vegetative cutting, which means they are genetically identical. They have no need for pollinators, most produce no nectar or pollen and most are sterile. Of the few modern cultivars that do produce nectar, e.g. some modern lavender cultivars, their phytochemical constituents including nectar and pollen have been altered at a genetic level, and may not have the same properties as their wild forebears.

It has been observed by some beekeepers that bees prefer to visit the original wild form of Lavandula angustifolia than its modern cultivars. And as any medicinal herbalist will tell you: You can only use a wild plant unaltered by plant breeding as herbal medicine, because hybridising plants can sometimes create toxicity in the plant cells. Only with the original wild herbs can you trust the phytochemical effects gleaned from thousands of years of tried and tested assurance. Research also shows that bees and animals respond in a similar way as humans to phytochemicals in medicinal plants, such as those with antibiotic or antifungal properties. It is interesting to note that bees often seem to favour plants with medicinal properties.

An exception to the acceptability of cultivars for use as ideal bee forage plants is the huge array of wonderful varieties of tree fruits, such as apples, plums, gages, cherries, pears and bush fruit such as currants, raspberries and strawberries. For most of these, the seed does not always grow true to type. However, the seed is viable and sometimes reverts back to its wild form if grown. The resulting plants will also produce pollen and nectar for pollinators, who, in turn, help to produce fruit for us.

The other exception is the array of old vegetable cultivars, all of which came originally from their weedy-looking wild ancestors. The old varieties were painstakingly bred over many years by our forebears. Vegetables were pollinated out in the field and each year, from say F1 to F10, with ‘F’ being one generation, seed was selected only from plants with desirable characteristics. These old
varieties are known as ‘heritage’ or ‘heirloom’ varieties and they do grow true from their viable seed, which is often saved and passed on as gifts from year to year. The seed cannot be sold legally due to Defra’s uniformity and licencing rules, and sadly, the high cost of these licences to growers is resulting in the disappearance of these seeds from catalogues. They are rapidly being replaced by F1 cultivars, produced in laboratories in just one plant generation. These F1s are not open-pollinated, their seed cannot be saved and, like the modern ornamental cultivars, they often either produce no pollinator reward or the pollen is unsuitable or inaccessible. Crucially, in contrast, all the old varieties of fruit and vegetables were bred with and by pollinators. ‘The arrived at ‘variety’ was, and still is, open-pollinated, just like wild plants, and they produce ideal nectar and pollen rewards. It will be a very sad day for us, for bees and other pollinators if or when these wonderful old varieties disappear.

Plant open-pollinated and rare varieties

Our starting point in looking for perfect plants for our self-sustaining garden is to dismiss the artificially bred, non-insect pollinated, modern plants. Instead, we need to seek out ‘open-pollinated’ varieties and wild species, insect or bee-pollinated plants. These wild species are the original, stable, genetic source of all our cultivars, old and new. As they have done for millions of years, wild plants will cleverly continue to adapt and evolve to stressors such as climate or atmospheric change, develop resistance to various diseases and even develop strategies for outwitting pests. The moot point for discussion here, is that these wild plants exist as they are, only because of their symbiosis with their pollinators. Without pollinators we would lose all these wild plants. Of course, there are some wind-pollinated wild plants, notably grasses, wheat, rice and maize, but also most annuals, such as oilseed rape and sunflowers, that will benefit from bee pollination with a slightly higher yield and better ‘fitness’, although they will set seed without it. An annual has only one chance to set seed and if it does not set seed it will suffer species decline. The majority of plant species used as food or medicine by humans are insect, mainly bee pollinated. Without realizing it, while we have been planting sterile hybrids originating from wild plants in our gardens, their wild ancestors are being displaced in the wild and many are now threatened with extinction.

How can we choose heritage varieties?

How can we distinguish between modern F1 hybrids and old heritage varieties of vegetables when buying seed? Between wild or artificially altered plants when looking for ornamental plants? There is a code of practice in plant labelling which stems from Carl Linnaeus, the brilliant eighteenth century, Swedish botanist who thought up a system for plant classification and naming. This is now known as the international code of botanical nomenclature, and the international code for cultivated plants. And luckily for us, horticulturists have had the good sense to adopt this practice and stick to it. When a plant or tree is labelled correctly it will bear first the genus then the species name followed, in lower case letters, either by a subspecies (subsp) or naturally evolved variety (var) without quotation marks. Labels you should avoid will bear the genus, then species name followed by a modern name written with the initial letter of the name in capitals, and quotation marks. It is this modern latter part of the name that shows it is a modern hybrid clone. ‘This sounds at first complicated, but it is really quite simple! Here is an example of correct labelling for a wild species and a shrub, and some of their modern cousins: Crataegus laevigata. Genus is followed by species. This is a wild hawthorn tree, with good forage for bees. Crataegus laevigata ‘Plena’. This is a double-flowered white cultivar named ‘Plena’. Crataegus laevigata ‘Paul’s Scarlet’. This is a double-flowered and red cultivar. Both these cultivars have had their nectaries replaced by extra petals. They do not, therefore, produce nectar. What a shame! Leptospermum scoparium. This is a wild manuka species, producing copious nectar. Leptospermum scoparium ‘Red Damask’. This is a double-flowered cultivar, which does not produce nectar.

“The way humanity manages or mismanages its nature-based assets, including pollinators, will in part define our collective future in the 21st century. The fact that of the 100 crop species that provide 90 per cent of the world’s food, over 70 are pollinated by bees…an estimated 20,000 flowering plant species, upon which many bee species depend for food, could be lost over the coming decades unless conservation efforts are stepped up.

Human beings have fabricated the illusion that in the 21st century they have the technological prowess to be independent of nature. Bees underline the reality that we are more, not less dependent on nature’s services in a world of close to seven billion people.”

Achim Steiner, UN Under-Secretary-General and UNEP Executive Director
There are hundreds of small, independent growers and nurseries in the British Isles that grow a wide range of wild species plants and other old open-pollinated cultivars. When choosing plants for your bees there are basically five questions you need to ask:

- Do the flowers provide nectar or pollen or both for bees?
- Do they flower in our temperate climate? Many plants are from warmer parts of the world and although they grow, some do not flower in our lower temperatures.
- Are they either open-pollinated old varieties or original wild species? Both are ideal bee plants.
- Will the soil type and situation in my garden suit the plant?
- “Plants that provide a larger area of flowers are more attractive to honey bees. Therefore, if space is limited grow a shrub or small tree rather than an herbaceous plant. The reason being that once honey bees have found a good source of food they return to the hive and recruit other workers. Therefore, they respond better to a ‘mass’ of flowers and will often ignore a single herbaceous plant. Gardeners often do not have space to grow four or five of the same plant together, but the same ground area covered by a shrub would be attractive to them. Bumblebees and solitary bees do not get recruits by dancing, work more on their own and so will work just one plant.” Dr Mick Street

I will leave you one final quotation, which shows that growing plants the organic way produce more nutritious and vital food plants–bees desperately need as many nutrients as they can get. And, as we know, plants express their nutrients in their pollen and nectar.

“There are composition differences between organic and conventional food. Taken together, the three studies on crops, meat and milk suggest that a switch to organic fruit, vegetables, meat and dairy products would provide significantly higher amounts of dietary antioxidants and omega-3 fatty acids.”

These quotes are taken from research by Professor Carlo Leifert, Professor of Ecological Agriculture at Newcastle University.

The table opposite lists a range of hardy, wild plant species or varieties that are native or well-established in the UK, but are non-invasive. The aim is to help you to select a variety of plants for your garden, whatever its size, and for your location.

Sources of information
I have listed in the table a selection of some of the best plants that provide useable nectar and pollen for bees. There are also lists drawn up by various organisations. Notably, the BBKA has a list showing clearly many species which provide serious forage for bees, assuming of course they are original wild species unaltered by modern plant-breeding.

Make your garden ‘your own’
Once you have found the perfect plants and planted them, this will just be the start of a blooming relationship with your garden. We all develop our own style of gardening and there is plenty of available advice for those who seek it, but if there is one last tip I would offer, it is this. To garden successfully, do not think you need anything else but time and your own two hands ... okay and certainly some good trusty tools such as forks, trowels, and a grass-cutter or scythe ... and, perhaps, some sheep to control areas of grass and weeds from growing beds. But, if you have a well-balanced garden that is in tune with nature, it will be brimming with wildlife. And what you do not need is the vast array of poisonous chemicals that manufacturers would have you believe you do need. These not only kill a target pest, but also all the other innocent insects and wildlife that would otherwise keep the target pest in check. It is a trap we can all fall into, unless we take the plunge and trust the natural world. For me, many years ago, it felt like I was taking a giant bungee jump when I finally ditched every single chemical, including soap, for aphid control. Ever since then, my garden has grown stronger and healthier, as have the plants and wildlife in it, including my bees.
Flowering times key:
Spring flowering (March, April, May) =
Summer flowering (June, July, August) =
Autumn flowering (September, October, November) =
Winter flowering (December, January, February) =

"A simple but effective guide to help all pollinators is to select plants with a single, open flower. Most of our honey comes from wild and cultivated crops between May and August, therefore gardeners should try to provide a constant nectar source, particularly earlier in spring and later in autumn when there are fewer sources available. The June gap is traditionally the first two weeks in June but it varies from year to year a little, and sometimes there is hardly any. Some plants that always used to flower in the June Gap, such as Cotoneaster horizontalis, now seem to flower earlier, but the Chestnuts and Sycamore are major nectar plants and so if they flowered in the June gap, there would not be one.”

<table>
<thead>
<tr>
<th>TREEs-Large</th>
<th>FruIT TREES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aesculus hippocastanum</td>
<td>Ribes grossularia (syn. R. uva-crispa)</td>
</tr>
<tr>
<td>Acer campestre, Acer spp</td>
<td>Ribes alpinum</td>
</tr>
<tr>
<td>Acer pseudoplatanus</td>
<td>Ribes rubrum</td>
</tr>
<tr>
<td>Ailanthus altissima</td>
<td>Rubus idaeus</td>
</tr>
<tr>
<td>Ailanthus glandulosa</td>
<td>Rubus loganobaccus</td>
</tr>
<tr>
<td>Castanea sativa</td>
<td>Rubus spectabilis</td>
</tr>
<tr>
<td>Catalpa bignonioides</td>
<td>Rubus idaeus var. americanus</td>
</tr>
<tr>
<td>Liriodendron tulipifera</td>
<td>Rubus idaeus var. idaeus</td>
</tr>
<tr>
<td>Robinia pseudoacacia</td>
<td>Rubus spectabilis var. spectabilis</td>
</tr>
<tr>
<td>Salix spp</td>
<td>Rubus idaeus var. idaeus</td>
</tr>
<tr>
<td>Sorbus intermedia</td>
<td>Rubus idaeus var. idaeus</td>
</tr>
<tr>
<td>Sorbus aria</td>
<td>Rubus idaeus var. idaeus</td>
</tr>
<tr>
<td>Tilia cordata</td>
<td>Rubus idaeus var. idaeus</td>
</tr>
<tr>
<td>(and some other Tilia spp)</td>
<td>Rubus idaeus var. idaeus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FruIT BRUSHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragaria x ananassa</td>
</tr>
</tbody>
</table>

BBKA News Incorporating The British Bee Journal April 2018
SHRUBS

Aralia elata, A. spinosa
†† Japanese angelica and Hercules Club. Both deciduous, Nectar major, August–September.

Berberis spp., B. darwinii

Buddleja globosa
†† Orange ball tree. Nectar, June.

Caliandra bodnieri
† Callicarpa. Nectar, July.

Calluna vulgaris

Ceanothus spp.
†† Ceanothus. Range of large evergreen species, Nectar + Pollen, April–November.

Cephalanthus occidentalis
† Quince. Nectar + Pollen, February–April.

Chaenomeles spp.
† Sun rose (aka Rock Rose). Range of evergreen species, some but not all hardy, Major Nectar + Pollen, May–July.

Cistus spp.
†† Climber. Pollen, December–February.

Clematis cirrhosa
†† Climber. Nectar + Pollen, April–May.

Clematis montana
† Nectar, winter and spring. Has vicious spines but a good source of winter nectar.

Colletia hybrida, C. paradoxa
† Range of deciduous species, Pollen. Summer.

Cotonaster spp., C. adpressus
† Major Nectar, July–August.

Cytisus scoparius
† Major Pollen, February–June.

Russian sage.
†† Major Nectar + Pollen, July–October.

Centaurea scabiosa

Althaea officinalis

Cardamine pratensis

Armeria maritima

Aster spp.

Astrantia major, A. major

Aubretia deltoidea

Campanula spp.

Cardamine pratensis

Centauraea montana

Centauraea nigra

Centaura scabiosa

Mock orange.
†† Nectar + Pollen, June gap.

Gorse.
†† Major Pollen, February–June.

Philadelphus
†† One of the few hardy species of this genera, Nectar + Pollen, June–September.

Garden privet.
†† Nectar, August–September.

Perennial cornflower.
†† Major Nectar + Pollen, June–September.

l
†† Excellent for all bees.

Climbing hydrangea (not the ordinary garden hydrangeas), Nectar + Pollen, June–August.

Rock Rose. Small evergreen shrub, Pollen, May–July.

Escallonia macrantha
†† One of the few hardy species of this genera, Nectar + Pollen, June–September.

Fremontodendron californicum
†† Nectar. February–March.

Fuchsia magellanica
†† Range of deciduous species, Pollen. Summer.

Helianthemum
†† Climbing Rose. Small evergreen shrub, Nectar + Pollen, November–April.

Hele spp., H. elliptica
†† Rock Rose. Small evergreen shrub, Nectar + Pollen, November–April.

Hebedra helix
†† Climbing hydrangea (not the ordinary garden hydrangeas), Nectar + Pollen, June–August.

Hydrangea petiolaris
†† Climbing hydrangea (not the ordinary garden hydrangeas), Nectar + Pollen, June–August.

Hypericum calycinum
†† Rose of Sharon. Major Pollen, June–September.

Hyssopus officinalis
†† Russian sage. Major Nectar + Pollen, July–October.

Ilex aquifolium
†† Mock orange. Nectar + Pollen, June gap.

Kolkwitzia amabilis
†† Portugal laurel, Nectar, June gap.

Laurus nobilis

Lavandula angustifolia
†† Flowering ornamental currents. Nectar + Pollen, April.

Ligustrum vulgare

Lonicera fragrantissima

Mahonia aquifolium, M. japonica
†† Snwberry. Major Nectar + Pollen, June–August.

Perovskia atriplicifolia
†† Coralberry. Nectar + Pollen, June–August.

Philadelphus spp.

Prunus lusitanica
†† Winter heaths. Major nectar, winter and spring, February–April.

Rosa spp., R. canina
†† One of the few hardy species of this genera, Nectar + Pollen, June–September.

Rubus fruticosus
†† Large deciduous shrub, Nectar + Pollen, May–June.

Rubus saxatilis
†† English Lavender. Major Nectar + Pollen, June–August.

Sambucus nigra
†† Garden privet. Major Nectar, August–September.

Saponaria officinalis
†† Garden privet. Major Nectar, August–September.

Sarcococca confusa
†† Wild privet. Major Nectar, July–August.

Symphoricarpus albus

Symphoricarpos occidentalis
†† Large evergreen shrub, Nectar + Pollen, November–April.

Symphoricarpos orbiculatus
†† Tree germander. Major Nectar + Pollen, July–November.

Teucrium fruticans

Ulex europaeus
†† Wayfaring tree. Nectar, May.

Viburnum lantana
†† Guelder rose. Nectar, May.

Viburnum opulus
†† Laurustinus. Pollen, October–April.

Viburnum tinus
†† Laurustinus. Pollen, October–April.

Achioia filipendulina, A. millefolium

Agastache foeniculum
†† Anise hyssop. Major Nectar, June–October. Excellent for all bees.

Ajuga reptans
†† Bugle. Nectar + Pollen, May–July; good ground cover.

Althaea officinalis

Anchusa azurcea
†† Garden anchusa or Italian bugloss. Major Nectar, June–September.

Anchusa officinalis

Anemone nemorosa
†† Wood anemone. Pollen, March–May.

Arabis alpina
†† Alpine rock-cress. Pollen + Nectar both major, March–May.

Armeria maritima

Aster spp.

Astrantia major, A. major
†† Masterwort. Pollen, June–August.

Aubrieta deltoidea
†† Major Nectar + Pollen, April–May.

BELLFLOWERS.

Cardamine pratensis
†† Cuckoo flower or Lady’s smock. Nectar + Pollen, April–July.

Centauraea montana

Centauraea nigra

Centaura scabiosa
Dandelion (Taraxacum officinale) Native weed deserving a place undisturbed. Major Nectar + Pollen, March–October.

Galega orientalis Goat’s rue. Pollen, May–August.

Hypericum perforatum St John’s Wort. Major Pollen, May–August.

Knautia arvensis Field scabious. Major Nectar + Pollen, July–August.

Lythrum salicaria Purple loosestrife. Major Nectar + Pollen, June–August.

Marrubium vulgare Baby’s breath. Nectar, July–August.

Onobrychis vicifolia Peony, single flowered forms. Pollen, June–July.

Polygonum caeruleum Jacob’s ladder. Major Nectar + Pollen, June–August.

succisa pratensis Devil’s bit scabious. Major Nectar + Pollen, July–August.

Trifolium repens White clover. Regarded as a weed by some, this deserves to be sown with all grasses. Major Nectar + Pollen, May–October. Honey crop. Excellent for all bees.

Borago officinalis Borage. Major Nectar + Pollen, April–October. Excellent for all bees.

Centarea cyanus Cornflower. Major Nectar + Pollen, June–August. Excellent for all bees.

Eryngium californica Californian poppy. Pollen, July–September.

Iberis umbellata Candytuft. Nectar + Pollen, July–August.

Lobularia maritima Sweet Alison. Nectar + Pollen, July–August.

Mycosis spp. Forget-me-not. Nectar + Pollen (Pollen so minute much is drawn into bees’ honey stomach), April–September.

Salvia pratensis Meadow sage. Nectar + Pollen, June–August.

Salvia verbanaca Wild sage. Nectar + Pollen, June–August.

Scleria echioides Siberian squill. Nectar, JMarch–April.

Verbascum olympicum Greek verbascum. Major Pollen, June–August.
VEGETABLES & CULINARY HERBS

<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allium cepa</td>
<td>Onion, left to flower. Major Nectar, June–August.</td>
</tr>
<tr>
<td>Allium porrum</td>
<td>Leek, left to flower. Major Nectar, June–August.</td>
</tr>
<tr>
<td>Allium schoenoprasum</td>
<td>Chive, left to flower. Major Nectar, June–August.</td>
</tr>
<tr>
<td>Asparagus officinalis</td>
<td>Asparagus, left to flower. Major Nectar + Pollen June–August.</td>
</tr>
<tr>
<td>Brassica spp.</td>
<td>Brassica species left to flower, Nectar + Pollen, April–August.</td>
</tr>
<tr>
<td>Cucurbita pepo, C. maxima</td>
<td>Marrow, courgette, pumpkin. Major Nectar + Pollen (especially large pollen grains; sought after) June–August. Excellent for all bees.</td>
</tr>
<tr>
<td>Cynara cardunculus</td>
<td>Cardoon. Nectar + Pollen, June–September.</td>
</tr>
<tr>
<td>Cynara cardunculus var scolymus</td>
<td>Artichokes, left to flower. Nectar + Pollen, June–September.</td>
</tr>
<tr>
<td>Foeniculum vulgare</td>
<td>Fennel. Nectar + Pollen, June–August.</td>
</tr>
<tr>
<td>Mentha spicata</td>
<td>Spearmint. Nectar + Pollen, May–October.</td>
</tr>
<tr>
<td>Ocimum basilicum</td>
<td>Basil, flowering encouraged by not picking leaves or stems. Nectar + Pollen, July–September.</td>
</tr>
<tr>
<td>Raphanus spp.</td>
<td>Nectar + Pollen, June–July.</td>
</tr>
<tr>
<td>Salvia officinalis</td>
<td>Sage. Nectar, May–October.</td>
</tr>
<tr>
<td>Satureja montana</td>
<td>Savory, perennial. Nectar + Pollen, June–July.</td>
</tr>
<tr>
<td>Thymus x citriodorus</td>
<td>Lemon thyme. Nectar, May–August.</td>
</tr>
<tr>
<td>Vicia faba</td>
<td>Broad bean. Major Nectar + Pollen, March–July.</td>
</tr>
</tbody>
</table>

BULBS, RHIZOMES & TUBERS

<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camassia spp.</td>
<td>Glory of the snow. Nectar + Pollen, March–May.</td>
</tr>
<tr>
<td>C. cusikii, C. leichtlinii, C. quamash</td>
<td>Species and cultivars all provide major Pollen. February–March.</td>
</tr>
<tr>
<td>Chionodoxa luciliae</td>
<td>Single varieties such as 'Happy Single' and 'Dark Angel' series. Nectar + Pollen, July–September.</td>
</tr>
<tr>
<td>Crocus spp.</td>
<td>Crown imperial. Showy garden plant, major Nectar, March–May.</td>
</tr>
<tr>
<td>Dahlia spp.</td>
<td>Snowdrop. Pollen, February–March.</td>
</tr>
<tr>
<td>Eranthis hyemalis</td>
<td>Winter aconite. Major Nectar + Pollen, January–March. Excellent to establish in vicinity of beehives.</td>
</tr>
<tr>
<td>Fritillaria imperialis</td>
<td>Summer hyacinth. Nectar + Pollen, August–September.</td>
</tr>
<tr>
<td>Galanthus nivalis</td>
<td>Snowflake. Pollen, February–April.</td>
</tr>
<tr>
<td>Galtonia candicans</td>
<td>Solomon’s Seal. Nectar + Pollen, May–June.</td>
</tr>
<tr>
<td>Leucojum vernum</td>
<td>Grape hyacinth. Nectar + Pollen, March–May.</td>
</tr>
<tr>
<td>Muscari</td>
<td>Nectar + Pollen, April–June.</td>
</tr>
</tbody>
</table>